Секрет ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДНИКОВ

Создание необходимых условий для сверхпроводимости в купратах также включает добавление других химических элементов вроде стронция. Добавляя эти атомы и охлаждая материал, можно добиться того, что электроны — которые обычно отталкиваются друг от друга — выстроятся парами и будут легко двигаться через материал. Чем же особенные эти купраты? Дело в том, что они могут достичь этого «волшебного» состояния при температурах, которые на сотню градусов превышают те, при которых обычно работают сверхпроводники. Это делает купраты весьма перспективными для реального применения. Такие материалы не потребуют охлаждения, так что их можно было бы относительно легко и недорого включить в нашу повседневную жизнь. Представьте энергосети, которые никогда не теряют энергию; более доступные системы поездов на магнитной подушке; дешевые методы магнитно-резонансной томографии и небольшие, но очень мощные суперкомпьютеры. Чтобы выяснить секрет «высокотемпературной» сверхпроводимости в купратах, ученым нужно понять, как ведут себя электроны в этих материалах. Группа Божовича в настоящее время решила часть загадки, определив, что именно контролирует температуру, при которой купраты становятся сверхпроводящими. Стандартная теория сверхпроводимости гласит, что эта температура определяется силой взаимодействия электронных пар, но команда Божовича пришла к другим выводам. После 10 лет подготовки и анализа более 2000 образцов купрата, меняя долю стронция, они выяснили, что число электронных пар в определенной области (скажем, на кубический сантиметр), или плотность электронных пар, — это определяет температуру перехода в сверхпроводящее состояние. Другими словами, за все отвечает не сила, а плотность, в данном случае — электронных пар.

Oppo представила наушники Enco Air4 Pro…
Сегодня компания Oppo достаточно тихо и без лишнего шума в интернете официально анонсировала свои новые б…
МегаОбзор
ЭЛ № ФС 77 - 68301. Выходные данные СМИ МегаОбзор
2006-2024
© MegaObzor